Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38607554

RESUMO

Cardiac arrhythmias remain a major cause of death and disability. Current antiarrhythmic therapies are effective to only a limited extent, likely in large part due to their mechanism-independent approach. Precision cardiology aims to deliver targeted therapy for an individual patient to maximize efficacy and minimize adverse effects. In-silico digital twins have emerged as a promising strategy to realize the vision of precision cardiology. While there is no uniform definition of a digital twin, it typically employs digital tools, including simulations of mechanistic computer models, based on patient-specific clinical data to understand arrhythmia mechanisms and/or make clinically relevant predictions. Digital twins have become part of routine clinical practice in the setting of interventional cardiology, where commercially available services use digital twins to non-invasively determine the severity of stenosis (computed tomography-based fractional flow reserve). Although routine clinical application has not been achieved for cardiac arrhythmia management, significant progress towards digital twins for cardiac electrophysiology has been made in recent years. At the same time, significant technical and clinical challenges remain. This article provides a short overview of the history of digital twins for cardiac electrophysiology, including recent applications for the prediction of sudden cardiac death risk and the tailoring of rhythm control in atrial fibrillation. The authors highlight the current challenges for routine clinical application and discuss how overcoming these challenges may allow digital twins to enable a significant precision medicine-based advancement in cardiac arrhythmia management.

4.
Physiol Rev ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153307

RESUMO

The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias. from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient clinical data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook towards potential future advances, including the combination of mechanistic modeling and machine learning / artificial intelligence, is provided. As the field of cardiology is embarking on a journey towards precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.

5.
Clin Res Cardiol ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847314

RESUMO

The sharing and documentation of cardiovascular research data are essential for efficient use and reuse of data, thereby aiding scientific transparency, accelerating the progress of cardiovascular research and healthcare, and contributing to the reproducibility of research results. However, challenges remain. This position paper, written on behalf of and approved by the German Cardiac Society and German Centre for Cardiovascular Research, summarizes our current understanding of the challenges in cardiovascular research data management (RDM). These challenges include lack of time, awareness, incentives, and funding for implementing effective RDM; lack of standardization in RDM processes; a need to better identify meaningful and actionable data among the increasing volume and complexity of data being acquired; and a lack of understanding of the legal aspects of data sharing. While several tools exist to increase the degree to which data are findable, accessible, interoperable, and reusable (FAIR), more work is needed to lower the threshold for effective RDM not just in cardiovascular research but in all biomedical research, with data sharing and reuse being factored in at every stage of the scientific process. A culture of open science with FAIR research data should be fostered through education and training of early-career and established research professionals. Ultimately, FAIR RDM requires permanent, long-term effort at all levels. If outcomes can be shown to be superior and to promote better (and better value) science, modern RDM will make a positive difference to cardiovascular science and practice. The full position paper is available in the supplementary materials.

6.
J Physiol ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665242

RESUMO

Cardiac electrophysiology and mechanics are strongly interconnected. Their interaction is, among others, mediated by mechano-electric feedback through stretch-activated ion channels (SACs). The electrophysiological changes induced by SACs may contribute to arrhythmogenesis, but the precise SAC-induced electrophysiological changes remain incompletely understood. Here, we provide a systematic characterization of stretch effects through three distinguished SACs on cardiac electrophysiology using computational modelling. We implemented potassium-selective, calcium-selective and non-selective SACs in the Tomek-Rodriguez-O'Hara-Rudy model of human ventricular electrophysiology. The model was calibrated to experimental data from isolated cardiomyocytes undergoing stretch, considering inter-species differences, and disease-related remodelling of SACs. SAC-mediated effects on the action potential (AP) were analysed by varying stretch amplitude, application timing and/or duration. Afterdepolarizations of different amplitudes were observed with transient 10-ms stretch stimuli of 15-18% applied during phase 4, while stretch ≥18% during phase 4 elicited triggered APs. Longer stimuli shifted the threshold of AP trigger during phase 4 to lower amplitudes, while shorter stimuli increased it. Continuous stretch provoked electrophysiological remodelling. Furthermore, stretch shortened duration or changed morphology of a subsequent electrically evoked AP, and, if applied during a vulnerable time window with sufficient amplitude, prevented its occurrence because of stretch-induced modulation of sodium and L-type calcium channel gating. These effects were more pronounced with disease-related SAC remodelling due to increased stretch sensitivity of diseased hearts. We showed that SACs may induce afterdepolarizations and triggered activities, and prevent subsequent AP generation or change its morphology. These effects depend on cardiomyocyte stretch characteristics and disease-related SACs remodelling and may contribute to cardiac arrhythmogenesis. KEY POINTS: The interplay between cardiac electrophysiology and mechanics is mediated by mechano-electric feedback through stretch-activated ion channels (SACs). These channels may be pro-arrhythmic, but their precise effect on electrophysiology remains unclear. Here we present a systematic in silico characterization of stretch effects through three SACs by implementing inter-species differences as well as disease-related remodelling of SACs in a novel computational model of human ventricular cardiomyocyte electrophysiology. Our simulations showed that, at the cellular level, SACs may provoke electrophysiological remodelling, afterdepolarizations, triggered activities, change the morphology or shorten subsequent electrically evoked action potentials. The model further suggests that a vulnerable window exists in which stretch prevents the following electrically triggered beat occurrence. The pro-arrhythmic effects of stretch strongly depend on disease-related SAC remodelling as well as on stretch characteristics, such as amplitude, time of application and duration. Our study helps in understanding the role of stretch in cardiac arrhythmogenesis and revealing the underlying cellular mechanisms.

7.
Europace ; 25(8)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37622575

RESUMO

In the last 25 years, EP Europace has published more than 300 basic and translational science articles covering different arrhythmia types (ranging from atrial fibrillation to ventricular tachyarrhythmias), different diseases predisposing to arrhythmia formation (such as genetic arrhythmia disorders and heart failure), and different interventional and pharmacological anti-arrhythmic treatment strategies (ranging from pacing and defibrillation to different ablation approaches and novel drug-therapies). These studies have been conducted in cellular models, small and large animal models, and in the last couple of years increasingly in silico using computational approaches. In sum, these articles have contributed substantially to our pathophysiological understanding of arrhythmia mechanisms and treatment options; many of which have made their way into clinical applications. This review discusses a representative selection of EP Europace manuscripts covering the topics of pacing and ablation, atrial fibrillation, heart failure and pro-arrhythmic ventricular remodelling, ion channel (dys)function and pharmacology, inherited arrhythmia syndromes, and arrhythmogenic cardiomyopathies, highlighting some of the advances of the past 25 years. Given the increasingly recognized complexity and multidisciplinary nature of arrhythmogenesis and continued technological developments, basic and translational electrophysiological research is key advancing the field. EP Europace aims to further increase its contribution to the discovery of arrhythmia mechanisms and the implementation of mechanism-based precision therapy approaches in arrhythmia management.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Taquicardia Ventricular , Animais , Ciência Translacional Biomédica , Antiarrítmicos/uso terapêutico
8.
Am J Physiol Heart Circ Physiol ; 325(4): H896-H908, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624096

RESUMO

By sensing changes in intracellular Ca2+, small-conductance Ca2+-activated K+ (SK) channels dynamically regulate the dynamics of the cardiac action potential (AP) on a beat-to-beat basis. Given their predominance in atria versus ventricles, SK channels are considered a promising atrial-selective pharmacological target against atrial fibrillation (AF), the most common cardiac arrhythmia. However, the precise contribution of SK current (ISK) to atrial arrhythmogenesis is poorly understood, and may potentially involve different mechanisms that depend on species, heart rates, and degree of AF-induced atrial remodeling. Both reduced and enhanced ISK have been linked to AF. Similarly, both SK channel up- and downregulation have been reported in chronic AF (cAF) versus normal sinus rhythm (nSR) patient samples. Here, we use our multiscale modeling framework to obtain mechanistic insights into the contribution of ISK in human atrial cardiomyocyte electrophysiology. We simulate several protocols to quantify how ISK modulation affects the regulation of AP duration (APD), Ca2+ transient, refractoriness, and occurrence of alternans and delayed afterdepolarizations (DADs). Our simulations show that ISK activation shortens the APD and atrial effective refractory period, limits Ca2+ cycling, and slightly increases the propensity for alternans in both nSR and cAF conditions. We also show that increasing ISK counteracts DAD development by enhancing the repolarization force that opposes the Ca2+-dependent depolarization. Taken together, our results suggest that increasing ISK in human atrial cardiomyocytes could promote reentry while protecting against triggered activity. Depending on the leading arrhythmogenic mechanism, ISK inhibition may thus be a beneficial or detrimental anti-AF strategy.NEW & NOTEWORTHY Using our established framework for human atrial myocyte simulations, we investigated the role of the small-conductance Ca2+-activated K+ current (ISK) in the regulation of cell function and the development of Ca2+-driven arrhythmias. We found that ISK inhibition, a promising atrial-selective pharmacological strategy against atrial fibrillation, counteracts the reentry-promoting abbreviation of atrial refractoriness, but renders human atrial myocytes more vulnerable to delayed afterdepolarizations, thus potentially increasing the propensity for ectopic (triggered) activity.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Humanos , Átrios do Coração , Doença do Sistema de Condução Cardíaco , Ventrículos do Coração , Eletrofisiologia
9.
Drugs ; 83(13): 1147-1160, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37540446

RESUMO

Cardiac arrhythmias remain a common cause of death and disability. Antiarrhythmic drugs (AADs) and antiarrhythmic agents remain a cornerstone of current cardiac arrhythmia management, despite moderate efficacy and the potential for significant adverse proarrhythmic effects. Due to conceptual, regulatory and financial considerations, the number of novel antiarrhythmic targets and agents in the development pipeline has decreased substantially during the last few decades. However, several promising candidates remain and there are exciting developments in repurposing and reformulating already existing drugs for indications related to cardiac arrhythmias. This review discusses the key conceptual considerations for the development of new antiarrhythmic agents, summarizes new compounds and formulations currently in clinical development for rhythm control of atrial fibrillation, and highlights the potential for drug repurposing. Finally, future directions in AAD development are discussed. Together with an ever-increasing understanding of the molecular mechanisms underlying cardiac arrhythmias, these components support a cautiously optimistic outlook towards improved pharmacological treatment opportunities for patients suffering from cardiac arrhythmias.


Assuntos
Antiarrítmicos , Fibrilação Atrial , Humanos , Antiarrítmicos/efeitos adversos , Fibrilação Atrial/tratamento farmacológico
11.
Front Cardiovasc Med ; 10: 1121517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139119

RESUMO

Sudden cardiac death is often caused by ventricular arrhythmias driven by reentry. Comprehensive characterization of the potential triggers and substrate in survivors of sudden cardiac arrest has provided insights into the trigger-substrate interaction leading to reentry. Previously, a "Triangle of Arrhythmogenesis", reflecting interactions between substrate, trigger and modulating factors, has been proposed to reason about arrhythmia initiation. Here, we expand upon this concept by separating the trigger and substrate characteristics in their spatial and temporal components. This yields four key elements that are required for the initiation of reentry: local dispersion of excitability (e.g., the presence of steep repolarization time gradients), a critical relative size of the region of excitability and the region of inexcitability (e.g., a sufficiently large region with early repolarization), a trigger that originates at a time when some tissue is excitable and other tissue is inexcitable (e.g., an early premature complex), and which occurs from an excitable region (e.g., from a region with early repolarization). We discuss how these findings yield a new mechanistic framework for reasoning about reentry initiation, the "Circle of Reentry." In a patient case of unexplained ventricular fibrillation, we then illustrate how a comprehensive clinical investigation of these trigger-substrate characteristics may help to understand the associated arrhythmia mechanism. We will also discuss how this reentry initiation concept may help to identify patients at risk, and how similar reasoning may apply to other reentrant arrhythmias.

12.
Circ Res ; 133(1): e1-e16, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37154033

RESUMO

BACKGROUND: Atrial fibrillation (AF), the most common arrhythmia, is associated with the downregulation of FKBP5 (encoding FKBP5 [FK506 binding protein 5]). However, the function of FKBP5 in the heart remains unknown. Here, we elucidate the consequences of cardiomyocyte-restricted loss of FKBP5 on cardiac function and AF development and study the underlying mechanisms. METHODS: Right atrial samples from patients with AF were used to assess the protein levels of FKBP5. A cardiomyocyte-specific FKBP5 knockdown mouse model was established by crossbreeding Fkbp5flox/flox mice with Myh6MerCreMer/+ mice. Cardiac function and AF inducibility were assessed by echocardiography and programmed intracardiac stimulation. Histology, optical mapping, cellular electrophysiology, and biochemistry were employed to elucidate the proarrhythmic mechanisms due to loss of cardiomyocyte FKBP5. RESULTS: FKBP5 protein levels were lower in the atrial lysates of patients with paroxysmal AF or long-lasting persistent (chronic) AF. Cardiomyocyte-specific knockdown mice exhibited increased AF inducibility and duration compared with control mice. Enhanced AF susceptibility in cardiomyocyte-specific knockdown mice was associated with the development of action potential alternans and spontaneous Ca2+ waves, and increased protein levels and activity of the NCX1 (Na+/Ca2+-exchanger 1), mimicking the cellular phenotype of chronic AF patients. FKBP5-deficiency enhanced transcription of Slc8a1 (encoding NCX1) via transcription factor hypoxia-inducible factor 1α. In vitro studies revealed that FKBP5 negatively modulated the protein levels of hypoxia-inducible factor 1α by competitively interacting with heat-shock protein 90. Injections of the heat-shock protein 90 inhibitor 17-AAG normalized protein levels of hypoxia-inducible factor 1α and NCX1 and reduced AF susceptibility in cardiomyocyte-specific knockdown mice. Furthermore, the atrial cardiomyocyte-selective knockdown of FKBP5 was sufficient to enhance AF arrhythmogenesis. CONCLUSIONS: This is the first study to demonstrate a role for the FKBP5-deficiency in atrial arrhythmogenesis and to establish FKBP5 as a negative regulator of hypoxia-inducible factor 1α in cardiomyocytes. Our results identify a potential molecular mechanism for the proarrhythmic NCX1 upregulation in chronic AF patients.


Assuntos
Fibrilação Atrial , Camundongos , Animais , Fibrilação Atrial/metabolismo , Regulação para Baixo , Miócitos Cardíacos/metabolismo , Hipóxia/metabolismo , Proteínas de Choque Térmico/metabolismo
13.
Basic Res Cardiol ; 118(1): 14, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020075

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used for personalised medicine and preclinical cardiotoxicity testing. Reports on hiPSC-CM commonly describe heterogenous functional readouts and underdeveloped or immature phenotypical properties. Cost-effective, fully defined monolayer culture is approaching mainstream adoption; however, the optimal age at which to utilise hiPSC-CM is unknown. In this study, we identify, track and model the dynamic developmental behaviour of key ionic currents and Ca2+-handling properties in hiPSC-CM over long-term culture (30-80 days). hiPSC-CMs > 50 days post differentiation show significantly larger ICa,L density along with an increased ICa,L-triggered Ca2+-transient. INa and IK1 densities significantly increase in late-stage cells, contributing to increased upstroke velocity and reduced action potential duration, respectively. Importantly, our in silico model of hiPSC-CM electrophysiological age dependence confirmed IK1 as the key ionic determinant of action potential shortening in older cells. We have made this model available through an open source software interface that easily allows users to simulate hiPSC-CM electrophysiology and Ca2+-handling and select the appropriate age range for their parameter of interest. This tool, together with the insights from our comprehensive experimental characterisation, could be useful in future optimisation of the culture-to-characterisation pipeline in the field of hiPSC-CM research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Idoso , Cálcio , Potenciais de Ação , Diferenciação Celular
14.
Circ Res ; 132(9): e116-e133, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36927079

RESUMO

BACKGROUND: Small-conductance Ca2+-activated K+ (SK)-channel inhibitors have antiarrhythmic effects in animal models of atrial fibrillation (AF), presenting a potential novel antiarrhythmic option. However, the regulation of SK-channels in human atrial cardiomyocytes and its modification in patients with AF are poorly understood and were the object of this study. METHODS: Apamin-sensitive SK-channel current (ISK) and action potentials were recorded in human right-atrial cardiomyocytes from sinus rhythm control (Ctl) patients or patients with (long-standing persistent) chronic AF (cAF). RESULTS: ISK was significantly higher, and apamin caused larger action potential prolongation in cAF- versus Ctl-cardiomyocytes. Sensitivity analyses in an in silico human atrial cardiomyocyte model identified IK1 and ISK as major regulators of repolarization. Increased ISK in cAF was not associated with increases in mRNA/protein levels of SK-channel subunits in either right- or left-atrial tissue homogenates or right-atrial cardiomyocytes, but the abundance of SK2 at the sarcolemma was larger in cAF versus Ctl in both tissue-slices and cardiomyocytes. Latrunculin-A and primaquine (anterograde and retrograde protein-trafficking inhibitors) eliminated the differences in SK2 membrane levels and ISK between Ctl- and cAF-cardiomyocytes. In addition, the phosphatase-inhibitor okadaic acid reduced ISK amplitude and abolished the difference between Ctl- and cAF-cardiomyocytes, indicating that reduced calmodulin-Thr80 phosphorylation due to increased protein phosphatase-2A levels in the SK-channel complex likely contribute to the greater ISK in cAF-cardiomyocytes. Finally, rapid electrical activation (5 Hz, 10 minutes) of Ctl-cardiomyocytes promoted SK2 membrane-localization, increased ISK and reduced action potential duration, effects greatly attenuated by apamin. Latrunculin-A or primaquine prevented the 5-Hz-induced ISK-upregulation. CONCLUSIONS: ISK is upregulated in patients with cAF due to enhanced channel function, mediated by phosphatase-2A-dependent calmodulin-Thr80 dephosphorylation and tachycardia-dependent enhanced trafficking and targeting of SK-channel subunits to the sarcolemma. The observed AF-associated increases in ISK, which promote reentry-stabilizing action potential duration shortening, suggest an important role for SK-channels in AF auto-promotion and provide a rationale for pursuing the antiarrhythmic effects of SK-channel inhibition in humans.


Assuntos
Fibrilação Atrial , Animais , Humanos , Fibrilação Atrial/metabolismo , Apamina/metabolismo , Apamina/farmacologia , Primaquina/metabolismo , Primaquina/farmacologia , Calmodulina/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Antiarrítmicos/uso terapêutico , Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
15.
J Physiol ; 601(13): 2711-2731, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36752166

RESUMO

Cardiac electrophysiology is regulated by continuous trafficking and internalization of ion channels occurring over minutes to hours. Kv 11.1 (also known as hERG) underlies the rapidly activating delayed-rectifier K+ current (IKr ), which plays a major role in cardiac ventricular repolarization. Experimental characterization of the distinct temporal effects of genetic and acquired modulators on channel trafficking and gating is challenging. Computer models are instrumental in elucidating these effects, but no currently available model incorporates ion-channel trafficking. Here, we present a novel computational model that reproduces the experimentally observed production, forward trafficking, internalization, recycling and degradation of Kv 11.1 channels, as well as their modulation by temperature, pentamidine, dofetilide and extracellular K+ . The acute effects of these modulators on channel gating were also incorporated and integrated with the trafficking model in the O'Hara-Rudy human ventricular cardiomyocyte model. Supraphysiological dofetilide concentrations substantially increased Kv 11.1 membrane levels while also producing a significant channel block. However, clinically relevant concentrations did not affect trafficking. Similarly, severe hypokalaemia reduced Kv 11.1 membrane levels based on long-term culture data, but had limited effect based on short-term data. By contrast, clinically relevant elevations in temperature acutely increased IKr due to faster kinetics, while after 24 h, IKr was decreased due to reduced Kv 11.1 membrane levels. The opposite was true for lower temperatures. Taken together, our model reveals a complex temporal regulation of cardiac electrophysiology by temperature, hypokalaemia, and dofetilide through competing effects on channel gating and trafficking, and provides a framework for future studies assessing the role of impaired trafficking in cardiac arrhythmias. KEY POINTS: Kv 11.1 channels underlying the rapidly activating delayed-rectifier K+ current are important for ventricular repolarization and are continuously shuttled from the cytoplasm to the plasma membrane and back over minutes to hours. Kv 11.1 gating and trafficking are modulated by temperature, drugs and extracellular K+ concentration but experimental characterization of their combined effects is challenging. Computer models may facilitate these analyses, but no currently available model incorporates ion-channel trafficking. We introduce a new two-state ion-channel trafficking model able to reproduce a wide range of experimental data, along with the effects of modulators of Kv 11.1 channel functioning and trafficking. The model reveals complex dynamic regulation of ventricular repolarization by temperature, extracellular K+ concentration and dofetilide through opposing acute (millisecond) effects on Kv 11.1 gating and long-term (hours) modulation of Kv 11.1 trafficking. This in silico trafficking framework provides a tool to investigate the roles of acute and long-term processes on arrhythmia promotion and maintenance.


Assuntos
Antiarrítmicos , Hipopotassemia , Humanos , Antiarrítmicos/farmacologia , Hipopotassemia/metabolismo , Técnicas Eletrofisiológicas Cardíacas , Canais Iônicos/metabolismo , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo
16.
Circ Res ; 132(4): 400-414, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36715019

RESUMO

BACKGROUND: Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. METHODS: To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+ spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+ handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. CONCLUSIONS: CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.


Assuntos
Miócitos Cardíacos , Diester Fosfórico Hidrolases , Camundongos , Animais , Humanos , Diester Fosfórico Hidrolases/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Catecolaminas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Antiarrítmicos/metabolismo , GMP Cíclico/metabolismo , Peptídeo Natriurético Tipo C/farmacologia
17.
Nat Rev Cardiol ; 20(3): 145-167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36109633

RESUMO

Inflammation has been implicated in atrial fibrillation (AF), a very common and clinically significant cardiac rhythm disturbance, but its precise role remains poorly understood. Work performed over the past 5 years suggests that atrial cardiomyocytes have inflammatory signalling machinery - in particular, components of the NLRP3 (NACHT-, LRR- and pyrin domain-containing 3) inflammasome - that is activated in animal models and patients with AF. Furthermore, work in animal models suggests that NLRP3 inflammasome activation in atrial cardiomyocytes might be a sufficient and necessary condition for AF occurrence. In this Review, we evaluate the evidence for the role and pathophysiological significance of cardiomyocyte NLRP3 signalling in AF. We first summarize the evidence for a role of inflammation in AF and review the biochemical properties of the NLRP3 inflammasome, as defined primarily in studies of classic inflammation. We then briefly consider the broader evidence for a role of inflammatory signalling in heart disease, particularly conditions that predispose individuals to develop AF. We provide a detailed discussion of the available information about atrial cardiomyocyte NLRP3 inflammasome signalling in AF and related conditions and evaluate the possibility that similar signalling might be important in non-myocyte cardiac cells. We then review the evidence on the role of active resolution of inflammation and its potential importance in suppressing AF-related inflammatory signalling. Finally, we consider the therapeutic potential and broader implications of this new knowledge and highlight crucial questions to be addressed in future research.


Assuntos
Fibrilação Atrial , Animais , Inflamassomos , Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamação
18.
Cardiovasc Res ; 119(3): 614-630, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35689487

RESUMO

Obesity is an important contributing factor to the pathophysiology of atrial fibrillation (AF) and its complications by causing systemic changes, such as altered haemodynamic, increased sympathetic tone, and low-grade chronic inflammatory state. In addition, adipose tissue is a metabolically active organ that comprises various types of fat deposits with discrete composition and localization that show distinct functions. Fatty tissue differentially affects the evolution of AF, with highly secretory active visceral fat surrounding the heart generally having a more potent influence than the rather inert subcutaneous fat. A variety of proinflammatory, profibrotic, and vasoconstrictive mediators are secreted by adipose tissue, particularly originating from cardiac fat, that promote atrial remodelling and increase the susceptibility to AF. In this review, we address the role of obesity-related factors and in particular specific adipose tissue depots in driving AF risk. We discuss the distinct effects of key secreted adipokines from different adipose tissue depots and their participation in cardiac remodelling. The possible mechanistic basis and molecular determinants of adiposity-related AF are discussed, and finally, we highlight important gaps in current knowledge, areas requiring future investigation, and implications for clinical management.


Assuntos
Adiposidade , Fibrilação Atrial , Humanos , Relevância Clínica , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Pericárdio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...